Weierstrass$506243$ - traducción al Inglés
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Weierstrass$506243$ - traducción al Inglés

CONSTRUCTION FOR MINIMAL SURFACES
Enneper-Weierstrass Parameterization; Weierstrass representation; Enneper-Weierstrass parameterization; Weierstrass-Enneper parameterization; Enneper–Weierstrass parameterization
  • A catenary that spans periodic points on a helix, subsequently rotated along the helix to produce a minimal surface.
  • Lines of curvature make a quadrangulation of the domain
  • The fundamental domain (C) and the 3D surfaces. The continuous surfaces are made of copies of the fundamental patch (R3)
  • Weierstrass parameterization facilities fabrication of periodic minimal surfaces

Weierstrass      
n. familienaam; Karl Wilhelm Theodor Weierstrass (1815-1897), Duits wiskundige, ontwikkelaar van de Weierstrass approximatie theorie

Wikipedia

Weierstrass–Enneper parameterization

In mathematics, the Weierstrass–Enneper parameterization of minimal surfaces is a classical piece of differential geometry.

Alfred Enneper and Karl Weierstrass studied minimal surfaces as far back as 1863.

Let f {\displaystyle f} and g {\displaystyle g} be functions on either the entire complex plane or the unit disk, where g {\displaystyle g} is meromorphic and f {\displaystyle f} is analytic, such that wherever g {\displaystyle g} has a pole of order m {\displaystyle m} , f {\displaystyle f} has a zero of order 2 m {\displaystyle 2m} (or equivalently, such that the product f g 2 {\displaystyle fg^{2}} is holomorphic), and let c 1 , c 2 , c 3 {\displaystyle c_{1},c_{2},c_{3}} be constants. Then the surface with coordinates ( x 1 , x 2 , x 3 ) {\displaystyle (x_{1},x_{2},x_{3})} is minimal, where the x k {\displaystyle x_{k}} are defined using the real part of a complex integral, as follows:

The converse is also true: every nonplanar minimal surface defined over a simply connected domain can be given a parametrization of this type.

For example, Enneper's surface has f(z) = 1, g(z) = zm.